
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited

ANALYSIS OF ROUGH SURFACE LIGHTING
BEHAVIORS WITH OPENGL

by

Christopher P. Slattery

September 2001

 Thesis Advisor: Wolfgang Baer
 Second Reader: Samuel E. Buttrey

Report Documentation Page

Report Date
30 Sep 2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Analysis of Rough Surface Lighting Behavior With
OpenGL

Contract Number

Grant Number

Program Element Number

Author(s)
Christopher Slattery

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Research Office Naval Postgraduate School Monterey,
Ca 93943-5138

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
95

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the
time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2001

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE:
Analysis of Rough Surface Lighting Behavior With OpenGL

6. AUTHOR
Christopher Slattery

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
In the physical world, humans gather valuable information about objects through their sight. Information
on shape, feel and composition are seen long before the object is touched. This information is generated
by light reflecting off the surface of objects. Despite the advancement of computer graphics due to
increased hardware rendering capacity, the fundamental equations, which draw three-dimensional
scenes, lack the ability to truly model realistic objects. Whether it is smooth like highly polished metal
or rough like the shag of a carpet, it is the reflection of light that tells humans what a surface feels like.
The attempt taken in this thesis to implicitly model the roughness of textured surfaces through
examination of an explicit model rendered with the OpenGL lighting equation. This approach has the
potential to successfully increase the realism of computer graphics without increasing polygon count
required for explicit surface generation. Through simulation of an explicitly constructed rough surface
followed by the analysis of the behavior of its reflected light, the initial behaviors of textured surface
reflections are identified. While these behaviors are not enough to create corrections to the OpenGL
lighting equation, they lay the foundation for further development.

15. NUMBER OF
PAGES 94

14. SUBJECT TERMS
Rough Surface Graphics, OpenGL, Opposition Effect

16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited

ANALYSIS OF ROUGH SURFACE LIGHTING BEHAVIORS WITH OPENGL

Christopher P. Slattery
Lieutenant, United States Navy

B.S., United States Naval Academy, 1994

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN

MODELING, VIRTUAL ENVIRONMENTS, AND SIMULATION

from the

NAVAL POSTGRADUATE SCHOOL
September 2001

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

In the physical world, humans gather valuable information about objects through

their sight. Information on shape, feel and composition are seen long before the object is

touched. This information is generated by light reflecting off the surface of objects.

Despite the advancement of computer graphics due to increased hardware rendering

capacity, the fundamental equations, which draw three-dimensional scenes, lack the

ability to truly model realistic objects. Whether it is smooth like highly polished metal or

rough like the shag of a carpet, it is the reflection of light that tells humans what a surface

feels like. The attempt taken in this thesis to implicitly model the roughness of textured

surfaces through examination of an explicit model rendered with the OpenGL lighting

equation. This approach has the potential to successfully increase the realism of

computer graphics without increasing polygon count required for explicit surface

generation. Through simulation of an explicitly constructed rough surface followed by

the analysis of the behavior of its reflected light, the initial behaviors of textured surface

reflections are identified. While these behaviors are not enough to create corrections to

the OpenGL lighting equation, they lay the foundation for further development.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. PROBLEM DEFINITION ..2
B. APPLICATIONS IN COMPUTER GRAPHICS ...3

II. BACKGROUND ..5
A. DEFINING ROUGH SURFACE REFLECTIONS THROUGH THE

OPPOSITION EFFECT..6
1. History of the Opposition Effect ...7
2. Defining Reflectance Models...9

a) Directional Reflectance...10
b) Hemispherical Reflectance...10
c) Conical Reflectance ..10

3. The Bi-Directional Reflectance Model...11
4. The Bi-Directional Reflectance Function...11

B. AN ALTERNATIVE METHOD FOR MODELING ROUGH
SURFACES IN COMPUTER GRAPHICS...11

C. MODELING THE OPPOSITION EFFECT IN COMPUTER
GRAPHICS...12
1. The OpenGL Lighting Model ...13
2. The Light Source / Reflecting Body Interaction14
3. The Components of the Reflective Light According to OpenGL ..14

a) Ambient Component ...14
b) Diffuse Component ...15
c) Specular Component...15

D. APPLYING THE OPENGL LIGHTING EQUATION15
1. OpenGL Lighting Equation Limitations ...17
2. The Principle Basis of the OpenGL Equation.................................17
3. Visual Effects of the OpenGL Lighting Components19
4. The OpenGL Bi-Directional Reflectance Function19

E. SUMMARY..20

III. EXPLICIT ROUGH SURFACE MODELING AND SIMULATION..................21
A. DESIGNING THE ROUGH SURFACE SIMULATOR............................21

1. Base Line Assumptions ..22
a) Incorporate a Bi-Directional Reflectance Function Model ..22
b) Provide Variability to the Rough Surface22
c) Provide an Experimental and Control Model22

2. Using Java & Java3D (OpenGL Variant)23
3. Program Design..23
4. Developing the Rough Surface..26

a) Basic Geometric Building Block ..27
b) Inner Shadowing...27

 viii

c) Gouraud Shading..28
d) The Light Source...28

5. Measuring Light Reflected by a Surface ...29
6. Incorporating Low Grazing Angle Reflections32

IV. SIMULATION LIMITATIONS...33
A. ALIASING AND PIXELATION..33

1. Pixelation...33
2. Aliasing ..35

B. PROBLEMS RESULTING FROM MAXIMUM LIGHTING
CONDITIONS IN OPENGL ..36

C. PYRAMIDS POORLY REPRESENT ROUGH SURFACES...................38
1. Non-Random Reflecting Normals ..38
2. Rectangular Reflection Patterns ...39

D. VALIDITY OF THE SIMULATION TOOL..40

V. DATA ANALYSIS ...43
A. GOALS OF ANALYSIS..43
B. SELECTING SIMULATION RESULTS ..43
C. USE OF DATA REGRESSION TO DEVELOPMENT MODEL44
D. DIVIDING THE LIGHTING MODEL ...45
E. THE SPECULAR COMPONENT ...46

1. Effects of Truncation on Specular Reflections47
a) Developing a Model for the Forward Specular Reflection ...48
b) Adapting the model for to Backwards Specular Reflection...51

2. Effects of Height-to-Width Aspect Ratio on Specular
Reflections...54

F. THE DIFFUSE COMPONENT..55
1. The Effects of Truncation Level on Diffuse Reflections56
2. Effects of Height-to-width Aspect Ratio on Diffuse Reflections58

G. COMBINING THE EFFECTS...59
H. SUMMARY..59

VI. CONCLUSIONS ..61

APPENDIX A: GLOSSARY OF TERMS...65

APPENDIX B: OPERATION MANUAL FOR ROUGH SURFACE SIMULATOR.....67

LIST OF REFERENCES ..77

INITIAL DISTRIBUTION LIST...79

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF FIGURES

Figure 1: Example of Real World Textured Surface Reflection.......................................2
Figure 2: Phase Angle Diagram...6
Figure 3: Photos Of The Opposition Effect On The Moon ...8
Figure 4: Illustration of Shadow Hiding..9
Figure 5: Phong Lighting Equation (Bui-Tong) ..16
Figure 6: Geometric definitions associated with the OpenGL lighting model................16
Figure 7: Illustration of Rough Surface Simulation Program ...24
Figure 8: Flow Diagram for Rough Surface Simulator ...26
Figure 9: Images of Shadows at different Inc idence Angles in the Simulation Tool......28
Figure 10: Surface Views at Near Zero Angles...30
Figure 11: Views depicting Fixed and Variable Capture Windows30
Figure 12: Shows Differing View Angles ...31
Figure 13: Example Of Near Angle Reflection...32
Figure 14: Effects of Pixelation on Image Detail ..34
Figure 15: Example of Pixelation in Rough Surface Rendering35
Figure 16: Example of Aliasing Effects in the Simulation Tool.......................................36
Figure 17: Example of Truncation of Specular Lobe at Maximum Source Intensity37
Figure 18: Halo Effect As Seen From An Airplane On A Grassy Field39
Figure 19: Charts Illustrating Phase Shift in Simulation Tool ..40
Figure 20: Specular Reflection On A Smooth Surface ...46
Figure 21: Specular Reflection Varying Truncation Value...47
Figure 22: Elements of the Reflection Graph..48
Figure 23: Comparison Of Forward Reflection Models To Simulation Data50
Figure 24: Effects of Truncation Level On Surface Reflection Areas52
Figure 25: Comparison Of Backward Reflection Models To Simulation Data53
Figure 26: Specular Reflection Varying Aspect Ratio ..55
Figure 27: Reflection Intensity Of Diffuse Component On A Smooth Surface................56
Figure 28: Diffuse Reflection Intensity Varying Truncation Level57
Figure 29: Diffuse Reflections Varying Height-to-width Aspect Ratio............................59

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

LIST OF TABLES

Table 1: Comparison Of Statistical Results For Forwards Reflection...........................50
Table 2: Comparison Of Statistical Results For Backwards Reflection53

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGMENTS

I would sincerely like to thank Professor Wolfgang Baer for his guidance, and

insight into this thesis. I am indebted to you for experience and feedback in this thesis.

Working with you will forever change how I look at grassy field on a sunny day.

I would also like to thank Professor Sam Buttrey for his time and patience in this

thesis. The results from the analysis would not have been possible without your

involvement. I also owe you a great deal for the time spent editing, which transformed

my thesis research into this document, of which I am immensely proud.

Finally, to my friend and fiancé, LT Julia Lopez, thank you for your support,

guidance and patience, which has helped me throughout the entire thesis.

 1

I. INTRODUCTION

Until a medium is created to display real three-dimensional images, three-

dimensional graphics must continue to be presented through a two-dimensional medium.

The true nature of three-dimensional graphics can then only be portrayed through

interaction.(Moller, p.122) This same interaction is used to turn monocular cues into

depth perception in the physical world. More specific data about object themselves can

be extracted than simply positional information. This information can be gleamed from

the manner in which light is reflected from an object as the viewpoint changes. It is in

the reflection from an object that we can see its texture.

Carpets are an excellent example for illustrating the behaviors of illuminated

textured surfaces. Figure 1 shows how a silk carpet that has both a textured and shiny

surface can reflect light in completely different ways from opposite viewpoints. All

carpets have a specific direction in which the threads lay. The apparent brightness of the

carpet significantly changes by either pointing the light source into or away from the

thread lay. However, if this same example was attempted in computer graphics program

as a two-dimensional image, the image would appears exactly the same regardless of the

position of the viewpoint.

 2

Into the threads

Perpendicular View

Along the threads

Figure 1: Example of Real World Textured Surface Reflection

In the real world, the laws of physics determine how object reflect light. In

computer graphics, it is the rendering equations inside graphics libraries, like OpenGL

and DirectX, which attempt to recreate these same reflections. If graphics libraries

ignore an important part of the laws of physics, than they can hardly hope to accurately

recreate it.

A. PROBLEM DEFINITION

Current graphics libraries do not intrinsically model rough surfaces. Much of the

appearance of objects in the real world is a result of their textured surface reflecting light.

In order for current graphics libraries to model realistic surfaces, they have to explicitly

build the textured surface with a complex polyhedron. An accurately represented rough

surface would require millions of individual polygons. This amount radically increases

as the surface area or texture detail represented increases. Despite break-neck speeds

found in today’s computers, it is still not feasible to model rough surfaces explicitly.

 3

An alternative to modeling rough surfaces explicitly is to develop a method for

characterizing rough surfaces based on their interactions with light. Surfaces composed

of relatively few polygons, which reflect light as if they were rough, would then be able

to render realistic images at a fast enough frame rate to support scene interaction which is

essential for realism.

This thesis will attempt to add intrinsic rough surface capability to OpenGL in the

form of a correction component to its lighting model. To accomplish this task, the

reflective behaviors of various computer generated rough surfaces will be examined

through the development of a rough surface simulation program. The correction will

attempt to quantify the difference in behavior between that of a smooth surface, which

OpenGL already models quite well, and a textured surface.

This thesis will explore rough surface reflection using the following method:

1) Simulate a rough surface reflecting light via an explicitly computed generated
textured model

2) Reflected light is captured, measured and recorded

3) Analyze the data for principle behaviors

The result will be the definition of a term for a correction to the OpenGL

rendering equation that will serve as a first-order approximation for rough surfaces.

B. APPLICATIONS IN COMPUTER GRAPHICS

Interactive 3D computer graphics suffer from a cartoon-like feel which is a direct

result of graphics libraries’ failure to implicitly render textured surfaces. All surfaces

reflect light with the same reflective behavior regardless of the intended composition of

the surface or object. The realism of graphics largely depends on the lighting and how

its behaviors matches those found in the real world. Realism is either gained or lost when

computer graphics incorporate motion or interaction. It is easier to see the strengths or

weaknesses of the lighting model when the viewer can look and move around. The

observation that a rough object is reflecting light incorrectly may not necessarily be a

conscious one, but it will detract from the realism of the scene.

 4

Plugging the capability to model rough surfaces into a graphics library results in

scenes where shiny surfaces can easily be distinguished from rough ones. This produces

scenes that are more natural and realistic. Adding this functionality increases the

complexity of the lighting model, thus slowing it down. The realism which is gained

with the better lighting model may be lost if the frame rate slows down too much.

Therefore, the computational nature of the correction must also be lightweight.

 5

II. BACKGROUND

The human eye’s perception of color, when looking at a surface in the physical

world, depends on the distribution of photon energies that arrive and trigger the eye’s

cone cells. Those photons originate from one or many light sources, some photons are

absorbed and some of which are reflected by the surface. Additionally, different surfaces

have very different reflective and absorption properties – which is to say that a shiny

surface tends to reflect light in a specific direction, while a dull surface tends to scatter

incoming light equally in all directions. Most surfaces are somewhere in between. (Woo,

p.177)

Objects in the real world all reflect light differently. Useful information about

their size, shape and composition can be gathered from their appearances. The

appearance of an object is a function of the how the object’s surface reflects light from a

particular light source. More specifically, it is the texture of the reflecting surface that

determines its appearance when illuminated. This texture, which is really a rough

surface, provides realism to objects. It is this same texture that is missing from objects

rendered by computer graphics, thus limiting the perceived realism of the scene

presented.

Without the ability to feel the texture on an object, our sight is the only means

available to determine if an object is smooth or rough. In this way, perhaps a concept

developed to understand objects appearing beyond our reach, can be used to increase the

realism of computer graphics. Like space, computer graphics renders objects we can see,

but not touch.

The scientific community has studied a phenomenon known as the opposition

effect, which it uses to describe the behavior of light reflected from astronomical bodies.

The same ideas that are the basis for the opposition effect can also be applied to a more

general case; rough surfaces. Importing opposition effect behaviors into computer

graphics is a reasonable method for simulating real three-dimensional textured surfaces.

 6

Because this thesis will attempt to correct the OpenGL lighting equation by using

an approximation of the opposition effect to model rough surface reflections, it is

necessary to define the opposition effect and how it relates to the OpenGL lighting

equation.

A. DEFINING ROUGH SURFACE REFLECTIONS THROUGH THE
OPPOSITION EFFECT

The opposition effect describes why rough surfaces reflect light differently from

smooth surfaces. It is the general assumption that a smooth surface with no refractive

index will have an exodus angle equal and in a direction opposite to the incident light.

That is to say, that a smooth reflective surface, that has no translucent depth, will reflect

light away from the source at an equal angle. Rough surfaces, on the other hand, tend to

reflect light back towards the light source. The opposition effect describes the

fundamental principles of complex surfaces reflecting light.

The opposition effect derives its name from the fact that astronomical bodies

appear at their brightest when the phase angle, which is the angular difference between

the incidence and view angle, is zero for solar-system objects at astronomical opposition.

Figure 2 illustrates the idea of phase-angle.

Figure 2: Phase Angle Diagram

 7

Planets, moons, etc, within the solar system are at astronomical opposition when the sun,

the earth and the object are in that particular alignment. This effect can be observed on

earth from an airplane as a bright halo around the shadow of the plane when the shadow

falls on vegetation or soil. This halo typically disappears on worn pavement or other

man-made surfaces for reasons that will be discussed later.

1. History of the Opposition Effect

Seeliger (1887, 1895) first discovered the opposition effect when examining the

light scattered by Saturn’s rings. He correctly explained the phenomenon by stating that,

In a medium in which the particles are large when compared with

the wavelength, particles near the surface cast shadows on the deeper

grains. These shadows are visible at large phase angles, but close to zero

phase-angle they are hidden by the object that cast them. Thus, the effect

may only be thought of as being caused by shadow hiding. (Hapke, p.217)

The moon’s surface is considered a reflectively rough surface. Apollo astronauts, while

on the surface of the moon, captured an example of light reflected by the opposition

effect and is shown in Figure 3. A distinct halo can be seen around the shadow of the

astronaut’s head in Figure 3. This halo is the result of the sun’s rays reflected in a

specific direction.

 8

On the Moon’s Surface

Overhead on a Space Walk

Figure 3: Photos Of The Opposition Effect On The Moon

It is important to note that the light source, in this case the sun, is behind the astronauts

taking the photos and not in front. The light from the sun is predominantly being

reflected back and is brightest when the phase angle is near zero. This is the opposite of

what happens on a smooth surface. The size of the halo is defined by the surface’s

reflective angular half width, its angular half-width, which is unique property of every

rough surface. The angular half-width is a function the shininess of the rough surface;

the more shiny it is, the smaller the half-width.

An additional effect helps define the shape of the reflected light. Areas in the

photo that have bright spots intermixed with visible shadows appear less bright even

though those bright spots are just as intense as inside the halo. As the viewpoint rises

above the incidence angle, the reflected light intensity dims. This is the same as looking

at the bottom of the first photo in Figure 3. This dimming is a result of shadows,

previously hidden in the rough cavities of the moon’s surface, now becoming visible.

The elements of shadow-hiding are illustrated in Figure 4 and is one of the principle parts

of the opposition effect.

 9

Figure 4: Illustration of Shadow Hiding

Computer graphics must incorporate these effects if they are to render rough or

textured surfaces.

2. Defining Reflectance Models

It is more practical to talk about scenes in terms of reflectance models which are a

light source and illuminated surface pair. Reflectance models allow specific definition of

the scene pair. The reflective behavior of the scene does not remain constant.

Identification of the specific reflectance model best illustrating the opposition effect will

ensure proper development of a computer graphics simulation model.

The concept of reflection can be divided into components based on a surface’s

characteristic behavior to emit or scatter light. Bruce Hapke coins the terms reflectance

and reflectivity, both terms referring to the fraction of incident light scattered or reflected

by a material. Reflectivity refers to the specular type reflections produced by smooth

surfaces. Reflectance, on the other hand, refers to the more diffuse type reflections

produced by geometrically complex surfaces. (Hapke p.182) While other types of

reflection models exists, the reflectance model is best suited for modeling the opposition

effect because it is created to describe the scattering of light by rough surfaces.

 10

 There are many kinds of reflectance, depending on the geometry of the surface.

It is important to qualify this defining term so that their meaning is unambiguous. In

current terminology, reflectance is preceded by a pair of adjectives describing the degree

of collimation of the light source and then that of the detector. Collimation describes

how parallel or straight the rays of a particular light source are. Typically directional,

conical and hemispherical are used to describe the level of collimation. If the case is

such that the adjectives describing both source and detector are the same then the prefix

bi- is substituted. Hence, a directional-directional reflectance model is then called a bi-

directional reflectance model. (Hapke, p.182)

a) Directional Reflectance

Directional reflectance is best portrayed by sunlight on a cloudless day;

hence being unfiltered or un-reflected light. The sun is considered a directional light

source since its rays sub-tend less than 0.5o on earth’s surface. In practice, this yields

shadows the same size as the casting object when the sun’s rays are perpendicular to the

earth’s surface, therefore no actual shadow would be visible around the object. A camera

whose lens is focused at infinity is an example of a directional detector.

b) Hemispherical Reflectance

Hemispherical reflectance is the opposite of directional reflectance. Due

to multiple scattering and reflections, the rays of light no longer hold any particular

direction. As the sun’s rays pass through a cloud layer, the rays are scattered and produce

a glowing light source. This is demonstrated by the seeming lack of shadows on a cloudy

day.

c) Conical Reflectance

Conical Reflectance is the combination of both directional and

hemispherical reflectance. In reality, all measured reflectances are bi-conical due to the

fact that no naturally occurring reflectance can be either perfectly collimated, nor diffuse.

However, many situations in nature are sufficiently close to collimated or diffuse for

those models to be used as useful approximations.

 11

3. The Bi-Directional Reflectance Model

A model that attempts to approximate the opposition effect must account for

shadows. This requires a directional light source. Additionally, because the effect is

better seen at longer distances, a directional detector is also required. A model

connecting the light incident from one direction with the light observed from another

direction is called a bi-directional reflectance model. Such a model is best suited to

model the opposition effect.

4. The Bi-Directional Reflectance Function

The bi-directional reflectance function, or BDRF, is the implementation of the bi-

directional reflectance model. The function will include the mathematical algorithm by

which the lighting reflections are calculated. The BDRF can be thought of as a black

box, which takes a series of parameter (incidence, viewpoint, roughness, etc…) and

yields a light intensity value.

B. AN ALTERNATIVE METHOD FOR MODELING ROUGH SURFACES
IN COMPUTER GRAPHICS

Another approach, which is widely viewed as the most accurate to date, seeks to

incorporate microscopic rough surface reflection effects through a statistical/micro-facet

model. While not explaining the specifics of the model, a model developed by Cook and

Torrance, uses a linear combination of the ambient, diffuse and specular

components.(Watt, P.58) The specular component of their model is based on the Fresnel

Equation for reflections off a perfect surface, and then modified by a geometry

attenuation term and a statistical micro-facet term. This model is similar to the Phong

model in that it only models reflections from a directional light source. Specifically, this

model was developed to improve the specular reflection off a highly polished metal

surface, which they assume is not a perfectly flat surface, but rather a nearly flat faceted

surface. Cook and Torrance’s model also takes on a more physically based approach by

dealing with light as wave energy and not simply geometric lines. In their model, it is

 12

possible to increase the roughness of a shiny surface by increasing the geometry

attenuation term, which controls the diffuse light emitted from the surface.

Unfortunately, this model does not affect the angular direction of the specular reflection

lobe, which this thesis believes is necessary to accurately model rough surface

reflections. This model is really better suited for modeling the subtleties of shiny

surfaces than the reflective behaviors of textured surfaces. Furthermore, this shows that

in addition to OpenGL’s deficiency, Cook and Torrance’s methodology is also

insufficient for correctly modeling rough surface reflective behavior.

C. MODELING THE OPPOSITION EFFECT IN COMPUTER GRAPHICS

Having described why the opposition effect is a good method for describing

reflection behaviors of rough surfaces, and why a BDRF is the appropriate model

structure, it is now important to describe why the OpenGL graphics library should be

used to simulate the model.

OpenGL is the most popular real time rendering model, and is also similar in form

to the extensible VRML lighting model. The majority of computer graphics cards

produced have hardware accelerators specifically designed to implement the equations

defined by the OpenGL model. OpenGL captures all of the characteristic components of

reflected light; emission, ambient illumination, and diffuse and specular reflectivity.

Currently, OpenGL is capable of modeling light reflections from a facet or a flat surface

comprised of a single polygon. A textured surface is comprised of many such facets. In

order to produce the reflective behaviors of a textured surface, the surface must explicitly

have these facets in order to allow OpenGL to make all lighting calculations. OpenGL as

of yet, does not contain the ability to create the lighting effects in one polygon as if that

polygon was comprised of many polygons. However, OpenGL’s wide use in computer

graphics and its open source accessibility makes it a good choice for simulating the

opposition effect with a polyhedron.

 13

1. The OpenGL Lighting Model

The OpenGL lighting model approximates light as if it can be broken into its

primary component colors; red, green and blue. The color of a light source is

characterized by the amount of red, green, and blue light it emits. The material of a

surface is characterized by the percentages of the incoming red, green, and blue

components that are reflected in various directions. (Woo p.177)

In the OpenGL model, light sources have effects only when there are surfaces

configured to absorb or reflect that particular color of light. Each surface is composed of

a material with various properties. Materials are able to emit their own light (such as

headlights on an automobile), scatter incoming light in all directions (such as sidewalk

made of concrete), or it might reflect some portion of the incoming light in a particular

direction (such as a mirror or other shiny surface). Materials may also take on a

combination of attributes, allowing for a multitude of possibilities.

The OpenGL lighting model considers light to be divided into four independent

components: ambient, diffuse, specular, and emissive. All four components are

computed independently and then added together. These four components can be

correlated with the components mentioned in the reflectance sections. Both directional

and hemispherical light sources can be used either singularly or as a group. Depending

on how the light sources and reflecting materials are configured, different types of

reflectance models can be simulated. The bi-directional reflectance model can be

simulated in OpenGL by using directional lights and surfaces with primarily diffuse and

specular components.

It is important to remember that the OpenGL lighting equations are just

approximations and do not capture every behavior of light in the physical world.

However, the model does work fairly well and, more importantly to computer graphics, it

can be computed quickly and efficiently. If a task required a more accurate lighting

model, then the calculations would have to be pushed up to the software level. Such

software can be enormously complex, and dramatically slow down graphics rendering.

 14

2. The Light Source / Reflecting Body Interaction

OpenGL’s lighting model follows a two-part paradigm, the light source and the

reflecting/absorbing-body pair. In order for a light interaction to exist, the light source

and reflecting body must be parameterized to allow for such an interaction. If a red light

source is paired with a body that reflects only blue or green, then the body will not be

visible. The same holds true for the specular and diffuse characteristics. A reflecting

body must be given ambient, diffuse or specular properties to be able to reflect light.

Changing how an object’s material interacts with light alters an its appearance.

Furthermore, an object’s material composition can be observed through its dynamic

interaction with light.

3. The Components of the Reflective Light According to OpenGL

Reflected light is far more complex than its light source. Because of the variety

of surfaces that all reflect light differently, the model must be broken down into several

sub-components. Since objects in computer graphics have no physical or tactile

properties, the only means of which an observer can determine their composition is

through their appearance. Careful selection of an object’s reflective properties is the only

way to relay this level of detail. The reflective properties are broken down into three

parts: ambient, specular, and diffuse. The OpenGL model also includes emissive light;

however because this is property of the light source and not of reflecting body, it will be

not be addressed hereafter.

The remaining three components that comprise the lighting equation all have a

common axiom, in that each component has a light source and reflective surface pair.

Without both parts of the pair, the component does not visually exist.

a) Ambient Component

Ambient illumination is light that has been scattered so much by the

environment that its direction is impossible to determine – it seems to come from all

directions. Back lighting in a room has a large ambient component, since most of the

light that reaches your eye has first bounced off many surfaces. Rooms lit by ambient

 15

illumination tend to have lamps that reflect light off several surfaces before being

viewable. This produces a uniform glow in the room. In OpenGL, ambient light

intensity is independent of incidence angle and viewpoint. Therefore, it is not useful to

include ambient light in the rough surface model.

b) Diffuse Component

The diffuse component is light that comes from one particular direction,

however far enough away so that its light rays are parallel. The result is light that is

brighter if it strikes squarely down on a surface than if it strikes a surface at a glancing

angle. Once directional light strikes a surface, it is scattered equally in all directions.

The level of brightness remains constant regardless of the view angle, so as long as the

surface is viewable. Any light coming from a particular position or direction most likely

has a diffuse component.

c) Specular Component

Like directional light, specular light also comes from a particular

direction, but tends to reflect off the surface in a preferred direction. If a laser beam,

which is composed of highly collimated light, is reflected off a high-quality mirror, it

produces an almost perfect specular reflection. Shiny metals or plastics have a high

specular component, where as chalk or carpet have almost none. The level of shininess

that the material exhibits drives the width of the specular reflection.

D. APPLYING THE OPENGL LIGHTING EQUATION

Now that the OpenGL lighting equation has been identified as the proper tool for

simulating the opposition effect, it is important to take a closer look at the workings of

the equation and why it is applicable to simulate a real world effect. As mentioned

before, light in OpenGL is broken into three components: red, green and blue. In

OpenGL, each pixel carries an intensity value, ranging from 0 to 255, in each of the three

colors. An extension of the Phone Lighting model, shown in Figure 5, is used to calculate

each color component. Mathematically, it is given by the following equation:

 16

Figure 5: Phong Lighting Equation (Bui-Tong)

In this equation, T(u,v) deals with texture coordinates and is not particularly

influential as a reflecting property. Ja, Jd, and Js are the normalized ambient, diffuse and

specular light intensities, and have values ranging from 0 to 1. µa, µe, µd, and µs are the

ambient, emissive, diffuse, and specular color intensities of a given object and range from

0 to 255. These intensities can be thought of as potential reflectiveness for each property.

ζ is the shininess parameter and ranges from 0 to 128, which determines the angular half-

width of the specular reflection lobe. Finally, the light vectors, l, n, and s, are defined

respectively as the incidence, surface normal and the reflection vectors. Figure 6

illustrates the interactions of the lighting model on a simple surface.

n

l o

Source
Global
Ambient

Specular

Diffuse

lo
lo

s
+
+

=

Specular Reflectance

EmissionDiffuse Reflectance

Diffuse

Figure 6: Geometric definitions associated with the OpenGL lighting model

N R,G,B = T(u,v) * {µa J a + µe + µdJd max(l⋅n,0) +µsJs [max(s⋅n,0)]ζ}

 17

1. OpenGL Lighting Equation Limitations

This lighting equation qualitatively captures the geometric behavior of emission

and reflection from a surface. There is no direct mapping between units in the physical

world and the OpenGL lighting equation, but this does not preclude the light equation

from being a valuable tool with which to simulate behaviors found in the real world. The

deficiencies of the equation must be kept in mind to prevent incorrect assumptions from

being made. These deficiencies include:

• Non-linear color intensity summation

• Non-physically based parameters

• No opposition or self shadow effect

• Statistical two-dimensional texture function

Despite these limitations, the OpenGL lighting equation is a good starting point

for a semi-empirical surface-rendering model, because it approximates the reflection

from a single flat homogeneous surface facet with reasonable accuracy.

2. The Principle Basis of the OpenGL Equation

Even though there are several areas where the OpenGL equation attempts to

model different light interactions in the physical world, this thesis will focus on the

intensity of a single pixel which has been illuminated by an incident light. Therefore,

several components of the lighting equation will be held constant so as to not affect the

reflection model. This eliminates the emissive term, and turns the texture parameter into

a constant.

The term pixel is used to represent both the detector element, which makes a

measurement of the reflected light, and the emissive element, which generates the visual

energy seen on a computer monitor. For both an ideal measurement and for the display

system, the pixel is simply two sides of the same area. The same light pattern that is

measured should be viewed by an observer with no difference. This is to say that the

virtual reality scene should visually be no different from the actual scene.

 18

The mathematical definition of the BDRF function is:

NR,G,B = BDRF * IR,G,B

Where:

• IR,G,B - Input Light Intensity

• BDRF – Bi-directional Reflectance Function

A single BDRF, which parallels the OpenGL lighting equation, is expressed in

terms of physical parameters is given by:

BDRF = ρl/π + {ρs(1 + ζ) [max(s⋅n,0)]ζ / [4πcos(i)]}

Where:

• ρl - Lambertian reflectivity

• ρs - Specular reflectivity.

(Watt, p.24)

This particular form is the basis by which surfaces are characterized in the

OpenGL lighting model. It is a function of three parameters: Lambertian reflectivity,

specular reflectivity, and shininess. These three parameters relate directly the bi-

directional reflectance model of the facets we hope to use as individual elements in our

simulation of the opposition effect.

This equation can be physically interpreted by going back to the two fundamental

mechanisms by which light interacts with a surface. The Lambertian term corresponds to

light that is absorbed and uniformly re-emitted. There is no viewpoint angular

dependency in the Lambertian term since the re-emission is isotropic; meaning light is

reflected equally in all directions. (Webster) The Lambertian portion of the BDRF is

identical to OpenGL’s diffuse light component.

The specular term represents light reflecting from a surface as a whole in the form

of a wave. Specular reflection is a function of reflection geometry and the index of

refraction, which is known as the Fresnel coefficient (ρs). (Wesley, p.24) For most solid

 19

surfaces, this coefficient is treated as constant. However, for more accurate models or

models that attempt to handle liquid surfaces, this coefficient itself would be a function.

3. Visual Effects of the OpenGL Lighting Components

The Lambertian and specular components result in two different lighting effects,

but both are important parts in modeling rough surface reflectance. The light intensity of

the Lambertian component is independent of view angle. Therefore, the Lambertian

component provides a surface with an unchanging light intensity as long as the light

source does not change position. This unchanging light source can be interpreted as a

glow that is cast by the surface.

The specular component is the light of the source seen “through” the surface. For

a perfectly flat shinny surface (i.e. a mirror which has a very large shininess value) the

image appears to be inside the surface. Instead of the uniform distribution given by the

Lambertian component, the specular component defines a narrow lobe. As the surface

becomes rougher and the shininess value decreases, the reflecting lobe becomes wider.

Despite the change in width of the reflecting lobe, the reflected color intensity remains

the same value as the source. It is important to note that the reflection of the specular

component is driven by the reflection geometry, which so far only considers smooth

surfaces.

4. The OpenGL Bi-Directional Reflectance Function

The OpenGL BDRF works best when scaling permits many pixel elements to

represent a single polygon and that polygon represents only one flat homogeneous

surface. Computer graphic artists create impressive images by remaining within these

constraints. Polygon size can be decreased, thus increasing the number which represents

a given area, in order to accommodate more complex materials and/or geometric

surfaces. Unfortunately, as the polygon count increases, the pixel-to-polygon ratio will

eventually decrease to the point where one pixel represents more than one polygon. The

This is best illustrated when computer objects are viewed up close and then moved into

 20

the distance. The same object can now be represented with fewer pixels. An algorithm

of one type or another must be incorporated to properly represent multiple polygons with

one pixels in order maintain the object’s correct appearance when viewed at long

distances. Hence, the experienced computer graphic artist can create models that

minimize negative affects that appear as a result of combining polygons. Adding the

implicit correction for rough surfaces would reduce the number of polygons needed, thus

reducing these undesirable effects.

E. SUMMARY

In order to enhance the realism of computer graphics, we must extend the

OpenGL BDRF model to accommodate more complex reflection effects while not

drastically slowing down its rendering process. This extension can be accomplished

through a correction to the lighting model which models behavior similar to that

exhibited by the opposition effect. Handling this extension implicitly will maintain the

high frame rate required for realistic interaction. Adapting OpenGL for this interaction

will result in the addition semi-empirical corrections to its BDRF in order to improve its

accuracy.

 21

III. EXPLICIT ROUGH SURFACE MODELING AND
SIMULATION

Computer graphics can be used to model the behavior of light reflecting off

surfaces by modeling the texture of real surfaces with many small facets. The validity of

the output depends on the number of polygon’s representing the surface and the accuracy

of which each facet is rendered. OpenGL, which has a credible model for representing

simple light interactions, can be used to calculate light reflected from a single facet. The

appearance of the textured surface will be the sum total of calculations of each and every

facet’s reflection. However, OpenGL is only a part of the process; an entire simulation

program must be written to build, manipulate and measure such a surface.

In order to simulate and analyze rough surfaces in computer graphics, design and

development of software tools is necessary. This chapter will discuss the considerations

that have gone into the design of the rough surface simulator, including the choice of

programming language, the architecture of the tool’s algorithm, and finally the rough

surface itself.

A. DESIGNING THE ROUGH SURFACE SIMULATOR

Various computer programs and tools are currently available that support the idea

of modeling rough surfaces in a computer environment. Many computer languages have

imbedded libraries that support three-dimensional graphic development. Despite the

attractiveness of higher-level tools that produce extremely realistic images, their

rendering engines are not open source, thus preventing the level of inspection and

interaction that this thesis requires. Open source algorithms are particularly important

when trying to understand and validate the output of the model.

 22

1. Base Line Assumptions

Before the design and development of any tool, it is imperative to establish the

expectations of the program. The simulator is built with the following assumptions in

mind:

a) Incorporate a Bi-Directional Reflectance Function Model

The opposition effect requires that a BDRF model be implemented in the

simulator. This requires that the characteristics of the light source be the same as those of

light infinitely far away; that is, they must be collimated light. Additionally, the detector,

in the case of the simulator the viewpoint, must have a focal view of infinity to prevent

any warping or bending of light rays as they are collected. These requirements can be

met will existing components of OpenGL lighting model.

b) Provide Variability to the Rough Surface

Capturing the behavior of a rough surface goes beyond simply varying the

incidence and viewpoint angles. True understanding of the behaviors requires examining

different types of rough surfaces. The simulator should allow basic manipulation of the

surface, enabling some surface variability.

c) Provide an Experimental and Control Model

All properly formed scientific experiments require that a control be

established alongside the experiment. Even though this experiment is entirely inside a

computer, a scientific approach is still applicable. In this case, the control will be a single

polygon the size of the rough surface. All facets in the rough surface will inherently have

the same diffuse and specular reflective properties as the control surface. Therefore, if

the parameters of the rough surface are set such that the surface becomes smooth, then

the output of the simulation should match the output of the control surface. This will also

enable comparison of the rough surface model to OpenGL’s current capability, which

will be implemented in a control surface.

 23

2. Using Java & Java3D (OpenGL Variant)

The purpose of the simulator is to create rough surface reflection behavior

through modeling the opposition effect with many facets each of which is rendered with

the OpenGL graphics library. While it is possible that another graphics library will yield

results similar to those from OpenGL, it would be inappropriate to modify the OpenGL

lighting equation based on those results. Therefore, this narrows the selection of a

programming language to one that supports the OpenGL library.

Several languages support the OpenGL graphics library for 3D programming.

Two of the more commonly used languages are C and Java3D. Each language has strong

and weak points. The C language has been around much longer than Java 3D and has

been used in industry on many projects. It allows for in-depth control of the lighting

model as well as providing faster results. Java 3D is Sun Microsystems’ variant of the

network-based Java language. It is a stronger typed and structured language than C,

making for stream-lined programming. Unfortunately, Java3D does not benefit from the

level of certification resulting from repeated use in industry that C offers.

Taking that all points into consideration, the Java 3D language was selected

to develop the simulation tool for three reasons:

• The OpenGL Architecture Review Board (ARB) has award to Java3D the
rights to bear its trademark, signifying the validation of the library
implementation.

• Java by nature is a platform independent language; therefore, the
expectation is that differing hardware will have no impact on program
output. This was tested and proven correct on computers using different
graphics cards.

• By nature Java is an easier language to decipher, thus allowing other
researchers continuing the development the simulator, thus extending its
software lifecycle.

3. Program Design

The purpose of the simulation program is to measure the light intensity reflected

from a rough surface at various incidence and view angles. The reflecting surface is a

 24

rough surface explicitly constructed by macroscopic polyhedral structure. The light

source and capture instrument are collimated as specified by the BDRF model.

The simulation program will generate two surfaces of the same material

composition, light source and capture device. The reflective distributions of both

surfaces measured from all possible viewpoint elevation and azimuth angles. This will be

accomplished by orbiting the capture device over the surface along a specific azimuth.

When that orbit is completed, the capture device will be rotated a predefined azimuth

increment, and then orbited again. This will repeated, until the entire surface has been

measured. Figure 7 illustrates this algorithm for measuring the reflective distribution of a

surface.

Figure 7: Illustration of Rough Surface Simulation Program

 25

To accomplish the purpose of the simulator program, the program will require

direct interaction with the graphics card’s buffers. It will be useful for multiple surfaces

of different characteristics to be rendered and measured at the same time, thus requiring

the program to manipulate and control multiple threads. Graphics User Interface (GUI)

front ends are required, since the simulator should also offer some level of interaction for

user-defined surface inspection.

To accomplish an automated process of measuring a given rough surface with a

specific incidence angle over all view angles, the following algorithm has been

developed:

• Both Experiment & Control scene graphs render a new frame.

• Execution threads for scene graphs are paused and wait for image
capture routines to complete execution.

• Image capture routine pulls information from buffers and notifies
scene graphs to resume.

• Rendered light intensity values for frame are calculated and written to
database.

• Thread control increments elevation/azimuth rotation.

• Start process over again.

Figure 8 is a graphically flow diagram of this process, and highlights interaction

management that must occur for proper automation to occur.

 26

Figure 8: Flow Diagram for Rough Surface Simulator

4. Developing the Rough Surface

The key to simulating a rough surface is to accurately build the undulations of a

surface from many small polygons. Each geometric detail contributing to the overall

surface roughness is modeled by many small polygons. In order for the simulator to

measure how different types of rough surfaces reflect light, the polyhedrons must be

constructed for easy manipulation.

 27

a) Basic Geometric Building Block

The simulator provides a means to examine the reflection behaviors of

rough surfaces. This thesis attempts to capture these behaviors, and modify OpenGL’s

lighting components such that the behaviors can be distilled into a texture form. A key

element in the texture concept is that the rough surface behavior must be uniform and

constructed from a single material if it is to replace many polygons with only one. This

uniformity requires a surface constructed from simple objects, which combine to produce

a rough surface. Defining this requirement further, the uniqueness is achieved through

repetitive use of one geometric object.

The simplest object is a pyramid. First, it has no curves. Its four-sided

base lends to easy grouping and organization. The slope of the reflecting faces is

determined by the height of the pyramid, making it relatively easy to adjust the roughness

of the overall surface. A shadow cast by a pyramid is the simplest geometric shape: a

triangle.

The height of the pyramid can also be truncated to simulate surfaces which

exhibit the behavior of a rough surface, but also incorporates the behavior of a worn

surface. This additional behavior is found in most real-world textured surfaces and key

to developing an accurate model.

b) Inner Shadowing

The crux of the opposition effect rests on the fact that shadows are

normally seen at large phase angles and are obscured at phase angles near zero. The

opposition effect requires inner shadows in order to be modeled correctly.

Java3D does not provide inherent shadowing capability; therefore the

simulator, that is the programmer, must explicitly cast shadows from one geometric

object to the next. This is a relatively easy task when the surface is built of regular

objects at regular intervals. In this case the shadows can be drawn on each pyramid

independent of its placement on the surface. Figure 9, shows the simulator’s shadowing

capability at various incidence angles as well as handling shadows for truncated

pyramids. Each picture is from a viewpoint directly in front of the pyramid and with no

 28

elevation. Although not visible, the shadow casted on these pyramids is from an identical

pyramid directly in front the ones visible.

Figure 9: Images of Shadows at different Incidence Angles in the Simulation Tool

Unfortunately, calculating shadows beyond these cases becomes extremely difficult.

c) Gouraud Shading

OpenGL uses the Gouraud shading model to calculate the amount of light

that a surface will reflect. As mentioned in Chapter II, the amount of light reflected from

a diffuse surface is driven only by the incidence angle and independent of the viewpoint.

The Gouraud shading model is rather simple and shown in the following equation:

Ireflected = µsource * cos (incidence angle)

For example, if the incidence angle is 30o and the intensity of the light source is 128, the

resulting diffuse reflection will be 64.

d) The Light Source

As stated in the design goals for the simulator program, the BDRF model

requires a non-subtending light source to properly portray the specular reflection.

Java3D, or rather OpenGL, provides a Directional Light class, which meets this

requirement and as a single light source provides illumination for both diffuse and

specular reflections. Conversely, the material properties of the polygons constructing the

10o Incidence

40o Incidence

55o Incidence

30o Incidence

with 45% Height Truncation

 29

rough surface must also be properly set to interact with this light source correctly.

Additionally, the direction of the directional light is variable allowing all incidence

angles to be simulated.

5. Measuring Light Reflected by a Surface

The simulator relies on the OpenGL functions to render all images. The graphics

program, and in this case the graphics card, renders the image and writes the resulting

data to a buffer. The data stored in the buffer is considered the final product. It is from

the color values stored in this buffer that the video signals are generated. By inheriting

from Java3D’s Canvas3D class, the simulator can gain access the specific portion of the

buffer that holds the data for each surface.

The buffer itself is set up so that each pixel on the screen is represented as color

triplet ranging from 0 to 255. This is the same color triplet that OpenGL uses as

mentioned in Chapter II. Because all of the polygons in both surfaces in the simulation

tool are either white, black or a shade of gray, the individual values in the color triplet are

always the same.

The important question which now arises is which pixel in the buffer to select as

the representative of the light reflected from a surface. It is also important to keep in

mind that the capture window captures the intensity values of pixels on the monitor and

not the polygons that make up the surfaces. If the surface viewed from the edge, it may

not be visible on the screen. However, as the viewpoint rotates to a perpendicular

position, then the surface becomes visible in the view plane; hence the portion of the

buffer that holds the surface’s data increases. Figure 10 shows this effect.

 30

Surface viewed 0o elevation

Surface viewed at 10o elevation

Figure 10: Surface Views at Near Zero Angles

It is therefore not possible to take all pixels in the buffer as representing light

emanating from the surface. A small capture window, which selects only those pixels

projecting from the simulated surface, is required. When developing the process to select

the dimensions of this capture window, two possibilities are considered. The first is a

capture window of fixed height and width located in the center of the surface’s window;

the second is a window that increases and decreases in height as the elevation is

incremented. This method attempts to minimize the error induced by measuring pixels

representing the horizon and maximizing the amount of the surface measured. The first

image in Figure 11 shows the pixels measured in the fixed capture window. This box

does not change as the elevation is increased. The second and third images show the

variable height capture window and how it attempts to follow the surface’s edges as the

viewpoint rotates.

Fixed Capture Window

Variable Capture Window at
0o elevation

Variable Capture
Window at 15o elevation

Figure 11: Views depicting Fixed and Variable Capture Windows

 31

While the variable height capture window produced smoother graphs, its effects

on the measurements caused by a wider range of view angles are not entirely obvious.

The simulator defines the view angle to be a single angle between the view vector and the

surface. That angle is only true for the pixel at the center of the surface. If the capture

window is wide enough, then a variety of view angles are captured which could lead to

the data being shifted in one direction or another. The degree of this shift is not known.

Figure 12 illustrates the how multiple view angles are actually seen when viewing a

surface. It is expected that the inclusion of so many actual view angles, actually washes

out what truly is happening at the center of the surface where the primary interest lies.

Avoidance of too many view angles is also the same reason that the fixed both types of

capture windows’ widths are relatively narrow.

Figure 12: Shows Differing View Angles

In order to minimize the angular width, the fixed height capture window was used in

favor of the variable height capture window. The final fixed capture window captures the

center 40 x 40 pixels. Each surface renders into a screen window of 300 x 400 pixels.

 The final light intensity for each pixel is the averaged of all pixels in the capture

window. The simulator stores this average value in the database as the reflected light

intensity for that particular elevation and azimuth angle.

 32

6. Incorporating Low Grazing Angle Reflections

Many rough surfaces appear very shiny at grazing angles. Grazing angle

reflections occur when the peaks on a rough surface are slightly rounded. This rounding

will cause light at low incidence to be reflected forward. This effect is only visible at

similarly low view angles that look into the direction of the light source. Only the

rounded tops of a rough surface are visible at such angles, resulting in a rough surface,

which has a behavior similar to a polished one. The simulator attempts to capture the

behavior of grazing angle reflections, which manifest differently, but occur on all rough

surfaces. To simulate this behavior, the simulator truncates pyramids, giving them a flat

horizontal surface. Figure 13 shows a rough surface with truncated tops and how light is

reflected at low incidence levels.

Light reflected backwards from the front
facet of the pyramid

Light reflected forwards off the top facet
from the pyramids

Figure 13: Example Of Near Angle Reflection

The level of truncation is variable which results in a varying amount of light

reflected forward. As the truncation increases, the rough surface gradually becomes a flat

surface in both appearance and behavior. As the truncation decreases, the rough surface

reflects less and less light forward. This behavior is not observed if roughness is

controlled by pyramid aspect instead of truncation.

 33

IV. SIMULATION LIMITATIONS

It is vital to keep in mind that the quality of the output relates directly to the

accuracy of the model. Despite adequate software design and testing, it has become

apparent that the existing simulator has in it severe limitations, which make using it to

model rough surfaces problematic at best. These limitations did not become apparent

until examining the simulator’s output data. If sufficient time allowed for each limitation

to be address and handled, then the simulation tool’s credibility would be much

improved.

A. ALIASING AND PIXELATION

Computer graphics, like all parts of computers, works on a discrete set of

numbers. No matter how large the buffers, or how big a value can be handled, there will

come a point when precision is lost because the very last digit can only be a 1 or a 0.

This same limitation can be found in images rendered by computers. Two problems have

arisen which are attributed directly to this discreteness. While these problems are not

directly responsible for the simulation tool’s inability to satisfactorily model rough

surfaces, they did contribute to a noticeable difference between real world observations

and the computer simulation.

1. Pixelation

When viewing the ocean at a relative low altitude it is easy to make out whitecaps

of individual waves and the deep blue of the sea. As you increase your altitude, the

whitecaps begin to blur into the blue of the sea, but not completely disappearing. Finally,

you will reach an altitude when sea blurs into a singular color. However, the color of the

sea at high altitude is different on a windy day than a calm one. The white of the

breaking waves and the blue of the seas combine into grayish blue. In effect, as the

viewing distance increases between a set of objects and the viewpoint, a blurring or rather

combining of color levels takes place. Unfortunately, this is not the case in computer

 34

graphics unless very specific code is designed to pixel blend. OpenGL does not

automatically handle this situation. Figure 14 attempts to illustrate the effect caused by

pixelation.

Figure 14: Effects of Pixelation on Image Detail

The simulator suffered from pixelation when the pyramid size was reduced

enough that multiple pyramid facets could be represented in a single pixel. Instead of

OpenGL averaging the color value of all of the polygons to be rendered in that pixel, it

takes the value of the closest one as part of its culling algorithm. When this happens over

a large portions of the image, a mesh of various colors instead of nice uniform shade,

begins to appear. The result is an image that appears significantly different from one that

would result in the physical world.

Another example of pixelation in the simulator is the incorrect manner in which

the tops of pyramids are draw in Figure 15. In this figure, red circles high-light areas that

are affected by pixelation: it looks as if the tops of some of the pyramids are connected.

 35

This is an artificiality created by rounding and floating-point error in computations

carried out by OpenGL during the rendering process. The pyramids in the bottom of the

image, which are also the closet, are affected less than those further away. It is only

when the viewable portions of partially hidden polygons are smaller than the pixel size

that incorrect pixel coloring can be seen.

Figure 15: Example of Pixelation in Rough Surface Rendering

Over a group of images, this error becomes even more noticeable as flashing lines

appear resulting from pixels being colored different from image to image. Pixelation of

this type translates directly into the data as jagged peaks over a range of values. These

jagged peaks introduced error, which hampers regression efforts.

2. Aliasing

Aliasing is a problem similar to pixelation, but it has different effects on the

rendered image. Aliasing results when a line, which is not vertical or horizontal, is draw

on a computer screen; the line appears jagged. This is a result of discrete pixels

attempting to represent a non-discrete object. OpenGL supports various methods for

eliminating aliasing effects. Such methods include using Fog algorithms or shading

techniques. (Woo, p.233) Unfortunately, these techniques only apply to lines and not

polygons; therefore they are unable to smooth the edges of the simulator’s pyramids. The

result is various geometric patterns emerging on the rough surface, which would not

appear in the physical world.

 36

The following image in Figure 16 is an example of aliasing. Like pixelation,

aliasing is more prevalent for objects further away from the viewpoint than closer.

Patterns resulting from aliasing appear in the section above the red line, while little or no

patterns are seen in the lower half.

Figure 16: Example of Aliasing Effects in the Simulation Tool

While it is possible to see such patterns emerging from macroscopic rough

surfaces, the intended correction to the OpenGL lighting equation is for uniformly

distributed microscopic roughness. It is not entirely understood how significant aliasing

and pixelation affect the simulations tool’s measurements, but an image rendered with

aliasing effects does fail to pass a visual test.

B. PROBLEMS RESULTING FROM MAXIMUM LIGHTING CONDITIONS
IN OPENGL

Unlike the scientific community’s practice of describing light in units of measure,

ranging from 0 to infinity typically in watts/cm2, OpenGL chooses to describe light in a

unit-less fashion as well as limiting intensity levels to a maximum of 255. The first

 37

difficulty, which already has been mentioned in Chapter II, is that no direct mapping is

possible from the physical world to the OpenGL lighting model. The second, and more

important in terms of the simulation tool, is that it is possible to generate values greater

than 255 in the specular portion of the OpenGL light equation. This breach of the 255

maximum is not possible for ambient and diffuse since the ambient value is a fractional

function and the diffuse value is a cosine function of the source, and never exceeds a

multiple of 1.0. However, the specular term’s exponential nature does allow intensity

values to exceed the maximum level even when the light source intensity is as low as

127. The result is a rather severe truncation of specular reflections when the light

source’s intensity approaches 255. Figure 17 is the result of measuring the intensities of

both specular and diffuse reflection from two identically flat surfaces, one being

illuminated by a light source of 127, the other by a light source of 255. The truncation

can been seen when the reflecting light level increases beyond OpenGL’s maximum

value.

Figure 17: Example of Truncation of Specular Lobe at Maximum Source Intensity

 38

This truncation significantly affects the behavior of specular reflections if a maximum

light source setting is used. To avoid truncation error it is necessary to run simulations at

low light levels. Since the reflected intensity of specular reflections is linear with respect

to light source intensity level, varying light levels to avoid truncation will not adversely

affect the results of the simulator.

C. PYRAMIDS POORLY REPRESENT ROUGH SURFACES

When designing the simulator, several geometric shapes were considered for use.

In the end, a truncatable pyramid was selected based on the ease of which shadows could

be calculated and the aspects of the pyramid adjusted. Unfortunately, using pyramids to

model rough surfaces introduced several artificialities, which significantly affected the

analysis of the simulation tool’s output data. These artificialities are:

1. Non-Random Reflecting Normals

It is the general assumption that rough surfaces have an inherent uniform random

distribution of surface normals.(Baer, 2001) This holds true for surfaces with a uniform

roughness, since the actual rough texture is microscopic. OpenGL relies heavily on

surface normals because it calculates specular and diffuse reflections with them. The

pyramids used in the simulation tool’s rough surface, were not constructed with any

randomness in order to maintain reasonable shadow calculations. Unfortunately, this

results in a rough surface with a single surface normal, and reflection behavior

inconsistent with a physically based rough surface. If the aspects of the pyramids had a

more random distribution, the resulting data would have more closely followed

observations from physical rough surfaces.

 39

2. Rectangular Reflection Patterns

In the physically based world, directional light that strikes a uniformly rough

surface, like those found in nature reflects in the shape of a circular lobe. Figure 18

shows the circular shape of the backward reflection of light off of grass.

Figure 18: Halo Effect As Seen From An Airplane On A Grassy Field

The circular shape of the reflecting lobe is the result of the fall off created by the

random distribution of surface normals characteristic of rough surfaces. This same

circular pattern is captured in the OpenGL specular component by using a cosine

function. The reflections produced by rough surfaces in the simulator do not have the

same circular patterns found in the physically based world. This is due to the simulation

tool’s use of pyramids to model rough surfaces. The resulting reflections produced by

the simulation tool takes on a rectangular shape, which significantly deviates from

physically based rough surfaces when the viewpoint azimuth begins to shift either to the

left or right of the light source. Figure 19 attempts to show this phase shift through a set

of graphs. Below are artificial top-down contour plots, created to help show this phase

shift from a different view aspect. It is the phase shift of the peak reflection lobe which

significantly degrades the quality of the simulator’s data, as the viewpoint changes

azimuth away from the incidence.

 40

Figure 19: Charts Illustrating Phase Shift in Simulation Tool

D. VALIDITY OF THE SIMULATION TOOL

While significant limitations do exist in the simulator, it does provide a

framework for improved rough surface representation. It shows that careful

consideration is needed when modeling the rough surface as shown in the limitations

 41

inherent in using pyramids. However, it is also the case where the pyramid’s limitations

are minimized, that the expected behavior can be seen. Should the pyramid be replaced

with a more suitable object or method, more accurate measurements might be possible.

 42

THIS PAGE INTENTIONALLY LEFT BLANK

 43

V. DATA ANALYSIS

The emphasis of this thesis is the design and development of the rough surface

simulator. With the simulator, various types of rough surfaces can be modeled and

analyzed to examine their reflective behaviors. Several sets of data were collected from

the simulator for analysis. The input parameters for these runs where configured to

minimize the error induced by the simulator’s limitations.

A. GOALS OF ANALYSIS

This analysis intended to develop a correction for OpenGL’s light equation to

approximate rough surface reflections. Due to the simulator’s limitations, the confidence

of the data allowed for only a limited analysis. The analysis did begin to identify

reflection behaviors of the surface’s specular and diffuse components. More

importantly, the analysis helped identify many of the problems and limitations found in

the simulator, which will improve its usefulness for future work.

B. SELECTING SIMULATION RESULTS

The simulator was set up to produced data varying two of its five input

parameters:

• Pyramid Truncation- 0.0 to 1.0 in 0.1 increments

• Pyramid Aspect- 0.0 to 1.0 in 0.1 increments

Due to the limitation surrounding the characteristics of a pyramid, the incidence was held

constant. Even though all incidence angles were examined to some extent, only one

incidence angle allows the correct behavior to be seen. A model approximating the

opposition effect should reflect the most light at 0o phase-angle. Since the majority of the

simulator’s runs set up the pyramids for a 1.0 aspect, the surface normal of the facet with

 44

the brightest reflection is 30o back in the direction of the light source. Therefore, the

incidence angle that best produces the opposition effect behavior is also 30o.

The simulator took measurements of the reflecting surface every degree of

viewpoint elevation and every 5 degrees of viewpoint azimuth. Due to the deterministic

nature of the simulator’s measurements, duplicate runs for statistical analysis were not

required. Examination of each surface produced roughly 6,500 points of data allowing

for good data resolution.

C. USE OF DATA REGRESSION TO DEVELOPMENT MODEL

The data produced by the rough surface simulator was analyzed through a

technique called data regression. Data regression is the process of examining the error

between a data set and a purposed model. Through finding specific behaviors in the

error, improvements to the overall model can be made. The process of regressing data is

by no means automated and often requires human intuition and interaction. The result is

a model or group of models that fit a data set to within an allowable margin error as set

by the analyst. Regression With Graphics by Lawrence Hamilton is an excellent

reference for further reading on data regression.

MathSoft’s S-Plus data regression software package was used for the model

development in this thesis. The details of the data regression will not be included,

however, the values used to compare the fit of models to the data set, are included in

Tables 1 & 2. S-plus’ General Linear Model which uses a Iterated Re-weighted Least

Squares regression function was used to estimate the errors of each model. The specific

errors of the linear model examined are the intercept (b0), the slope (b1), and the

Residual Sum of Squares (RSS). A model that properly fits the data set would have a b0

value near zero, and a b1 value near one. Models with smaller RSS values are thought to

be a better fit. These values were satisfactory metrics for comparing the various models

in this thesis.

It is important to point out that when data sets are typically regressed, models are

developed against the idea of an ultimate truth; that is somewhere out there, unbeknownst

 45

to the analysis, a perfect model exists. In search of that truth, the analyst must develop

models against the imperfect data points representing the truth. This thesis approached

the process of data regression differently, in that the data itself is assumed to be the truth,

and that models are developed to fit the data perfectly. The assumption that the data is

the truth is willingly made knowing that the limitations inherent in the simulator corrupts

the output enough to misrepresent the real behaviors to some level or degree. This

assumption is acceptable knowing that the desired validity of the resulting model is only

for an initial behavioral examination, and not one that completely defines the real truth.

Furthermore, it is possible to pull some beneficial information about how rough surfaces

really reflect light from a regression conducted in this manner.

D. DIVIDING THE LIGHTING MODEL

Chapter II illustrated the relationship between the OpenGL lighting equation and

the Opposition Effect. It is the assumption of this thesis that manipulating the diffuse and

specular terms in the OpenGL equation can approximate the opposition effect.

Furthermore, we assume that the manipulation can be described as one or more

mathematical functions. Therefore, the analysis will attempt to individually extract the

behaviors of the diffuse and specular components. These individual components should

still behave correctly when combined together, since under OpenGL the diffuse and

specular components are combined using simple addition.

A special set of runs was required in order to separate the light intensity reflected

by diffuse and specular components. While this did not adversely affect the behavior of

both reflections, it did remove all effects of inner shadows from the specular reflections.

The effects of the inner shadows were then examined in the diffuse reflection data. It

was not possible through the simulator to maintain the effects of the inner shadows on the

specular component while separating the diffuse component.

 46

E. THE SPECULAR COMPONENT

The simplest rough surface is a smooth surface. In this case, specular reflection

will result in a forward reflecting lobe. This means that the lobe will continue to travel

away from the light source. Figure 20 is the specular reflection on a smooth surface for

incidence angles varying from 0 to 90 degrees. The intensity level in this figure is 127.

Since the intensity of all the reflections remained at 127, the intensity of the reflected

light is dependent on the light source and not on the incidence angle. It is important to

note that the measured intensity of reflected light from a surface is an average of many

pixels taken from the center of the surface. Secondly, because light is broken into its

three-color components in OpenGL, and since the surface is has only black, gray or white

colors, the terms light and color can be used interchangeably.

Figure 20: Specular Reflection On A Smooth Surface

 47

The forward specular reflection decreases as the roughness increases while

modifying either the pyramid’s truncation value or the height-to-width aspect ratio.

These modifications have different effects on how the specular reflection changes.

1. Effects of Truncation on Specular Reflections

A rough surface constructed of truncated pyramids results in two specular

reflections; one forward and one back. When the surface is nearly smooth, the majority

of the light is reflected forward. As the truncation value increases, and the cavities

between pyramid tops grow larger, a backwards reflection lobe also appears. Graphing

the reflected light as truncation increases from 0% to 100% shows an inverse relation

between the intensities of the forwards and backwards reflected light. Figure 21

illustrates this relationship.

Figure 21: Specular Reflection Varying Truncation Value

 48

The light reflected back towards the light source, illustrated by the left portion of

the graph in Figure 21, is centered at 30o elevation, which is also the zero phase angle

since the incidence angle is 30o. The forward specular reflection is also correctly

centered at 150o elevation. Some quick math shows that 150o elevation is also 120o phase

angle, which is also twice the angular distance between the incidence angle and the

surface normal. Figure 22 illustrates the behaviors displayed in Figure 21 into a more

logical form.

Figure 22: Elements of the Reflection Graph

a) Developing a Model for the Forward Specular Reflection

Even though the forward and back reflections have very similar

characteristics, it is helpful to analyze the forward reflection first. Since the forward

reflection already exists on smooth surface, starting with the original specular model was

a logical step. It is clear from the behavior of the forward reflection lobe in Figure 21that

the angular width of the lobe does not change when varying truncation values; only the

 49

reflected intensity changes. Therefore, a model attempting incorporate this behavior

should focus only on changing the intensity of the reflection only.

At first glance, it looked as if the function for calculating the surface area

of the top of the pyramid as a function of truncation level would serve as a good model

for varying reflected intensity. For brevity, this function will be called the square area

function from the fact that it calculates the area of the pyramid’s top facet, which is a

square, based on the level of truncation. This function is stated below:

Ireflected = µsource * {2 * [(1 – t) / tan(θ)]}2

Where:

• t is the truncation value

• θ is the angle of the pyramid faces

If the light reflected by the pyramid’s top was the only source of reflected light, this

equation would work. However, there is a small amount of light which is reflected from

the sides of the pyramid, thus increasing the overall intensity. A simple model,

developed through data regression, captures the light intensity add from the sides of the

pyramid.

 Ireflected = µsource – [µsource * sin(t * π/2)]

Figure 23 compares the data collected from the simulator to both the square area function

and the regression model. In this comparison, roughness is attributed to varying the

truncation level.

 50

Figure 23: Comparison Of Forward Reflection Models To Simulation Data

Both models are good approximations of the behavior of the forward

reflecting lobe. While not being a perfect fit, the regressed model is a better fit. Table 1

shows the errors of the models to the collected data.

Table 1: Comparison Of Statistical Results For Forwards Reflection

 Mean Abs Error Standard Deviation b0 b1 RSS

Square Area Function 4.10 3.08 -4.684 1.012 122.407

Regressed Model 2.35 1.88 -2.268 1.032 51.918

 51

b) Adapting the model for to Backwards Specular Reflection

Having found a model that reasonably captures the behaviors of forward

reflection light on a rough surface created with truncated pyramids, the model should be

extended to handle back reflections. Referring back to Figure 21, the correlation between

the forward and back reflection lobes is evident. This figure shows that as truncation

level increases, the back reflection intensity increases as well, which is inverse to the

behavior of the forward’s reflection. It is also evident from the data that the angular

width of the back reflection lobe is the same as the forward lobe. It seems plausible to

use a model similar to the forward lobe. However, the model would have to take into

account the decreasing intensity levels seen in the back reflection data.

The decrease in reflection intensity is due to the mathematical nature of

the reflecting surface. In the forward reflection, light reflects off the tops of the

pyramids, which have a square shape. Light reflected off the front face of a pyramid

reflects from generally a triangular shape. The areas of both a triangle and square are

driven by the truncation value. A graph showing the change in area of each shape as the

truncation level changes is shown in Figure 24.

 52

Figure 24: Effects of Truncation Level On Surface Reflection Areas

This graph illustrates the two elements behind the change in intensity as truncation levels

change. First, when truncation level is 0.0 the majority of light reflected is from the

square reflector (the top facet of the pyramid) and, that as the truncation level increase to

1.0, the triangle shape of the front facet dominates. Second, the ratio of area of the

square at 0.0 truncation to the triangle at 1.0 truncation is the same as the ratio of the

forward lobe at 0.0 truncation and the back lobe at 1.0 truncation.

Figure 25 shows that the behavior of the backward reflection is similar to

that of the forward reflection. The mathematical function formula determining the area

of a triangle is:

Ireflected = µsource * {a – [a * (1 – t)2]}

Where:

• t is the truncation value

 53

• a is the surface area of a pyramid facet

= height/[2 * sin(tan-1(height/width))]

As with the function for finding the area of the top pyramid facet based on truncation

level, this function will be called the triangle area function. The data measured was

tested against a model similar to the one developed for the forward lobe, which is:

Ireflected = µsource * sin(t * π/2) / 2

Figure 25 and Table 2 shows the improved fit of the regressed model over the triangle

area function.

Figure 25: Comparison Of Backward Reflection Models To Simulation Data

Table 2: Comparison Of Statistical Results For Backwards Reflection

 Mean Abs Error Standard Deviation b0 b1 RSS

Triangle Area Function 4.96 2.30 1.760 1.077 21.883

Regressed Model 1.71 2.40 -0.92 0.980 8.858

 54

The regression model has a closer fit to the data taken from the simulator

than the straight mathematical function for determining the area of the triangular

reflection based on truncation level.

2. Effects of Height-to-Width Aspect Ratio on Specular Reflections

Another method for varying surface roughness is varying the height-to-width ratio

of the pyramid. A pyramid with a 0.0 aspect ratio will be completely flat, where a

pyramid with an aspect ratio of 1.0 produces extremely rough surface. Changing the

aspect ratio of the pyramid has a profoundly different effect on the behaviors of the two

reflections. Where truncation level affected reflection intensity only and did not change

the angular centers of those reflections, changing the aspect ratio affects both the

intensity and the angular center of that intensity. This is reasonable, since changing the

aspect ratio changes the surface normal of the primary reflection facet. As previous

stated the effects of varying aspect ratio were not examined in depth. Figure 26 shows

the shifting of the angular center as well as the change in intensity of the specular

reflection as the aspect ratio increases.

 55

Figure 26: Specular Reflection Varying Aspect Ratio

The second lobe seen in Figure 26 when the truncation level is at 0.2 is actually

the specular reflection off the backside of the pyramid. This reflection is seen only at

very low aspect levels. This effect, if viewed at much smaller intervals of aspect ratio,

would show that the forward specular reflection on a smooth surface actually divides into

the two separate lobes. This division rapidly decrease in reflected intensity since the

reflection break up into four smaller surfaces, each of which are reflecting light into a

different direction. No further examination into this effect was conducted.

F. THE DIFFUSE COMPONENT

The diffuse component is far simpler than its specular counterpart: one need know

only the incidence angle to determine the percentage of light reflected. In smooth

surfaces, viewpoint is irrelevant, but on rough surfaces viewpoint is necessary for

determining the intensity of the reflection. Despite its simplicity, we will see that the

 56

lack of shadow calculations in OpenGL will cause major errors in diffuse component

reflection intensities.

1. The Effects of Truncation Level on Diffuse Reflections

The graph of the diffuse component on a smooth surface is rather uninteresting.

Figure 27 shows the independent relationship of viewpoint and reflection intensity.

Figure 27: Reflection Intensity Of Diffuse Component On A Smooth Surface

Figure 28 shows how the intensity of the diffuse reflection changes as the surface

becomes rougher by increasing the truncation level. A rough surface with a truncation

level of 0% is identical to a smooth surface. The effects of truncation level on the diffuse

reflection are more complex than with the specular component. As mentioned before, the

value of the diffuse component remains constant for all viewpoints for a specific

 57

incidence angle when the surface is smooth. When the surface becomes rough, this no

longer holds true; the intensity of the diffuse reflection is now viewpoint-dependent.

Figure 28: Diffuse Reflection Intensity Varying Truncation Level

The non-continuous behavior of the graph in Figure 28 suggests that the model

describing rough surface diffuse reflection takes the form of three-part model. Even

thought specific formulas were not derived to describe this complex behavior, it was

possible to pull out the individual behaviors in each part of the model. Since all facets of

the pyramid produce diffuse reflections, their specific intensities are constant throughout

the range of viewpoint elevations. The overall intensity is derived from the portions of

each facet that are viewable are each viewpoint. So in essence, the function describes

how the view of the pyramid changes.

The model can be broken into three parts, which are described below. The

domain of the model is described in terms of viewpoint elevation.

 58

1. 0o to incidence angle (zero phase angle)

2. Incidence angle to the angle at which the front face is no longer visible

3. From that angle to 180o

Due to the nature of the pyramids used in the simulation tool and the desirability of a 30o

angle of incidence for the specular reflection, the domain is specifically broken down into

0o – 30o, 31o – 120o, and 121o – 180o.

The reflected intensities of all three parts are essentially driven by the amount

pyramid’s facet occupies a given view. For the first and third parts, the view is primarily

occupied by the front and back facet respectively, and the top facet if the pyramid is

truncated. Since the light reflected is diffuse, changing viewpoint with in this part does

not change the reflected intensity of each facet, therefore, the overall reflected intensity

remains constant. The second part incorporates the same facet comparison as the first

and third parts, but the reflected intensity decreases from the inner shadows that are only

visible in the second part. The effects of the inner shadows take on an exponential decay

of the difference between the intensity levels of the first and third parts. This exponential

decay could then be added to the intensity of the third part to produce an overall reflected

intensity for the second part. It is unlikely that a continuous function exists that describes

the all of behaviors of varying truncation level on the diffuse component.

2. Effects of Height-to-width Aspect Ratio on Diffuse Reflections

Changing the height-to-width aspect ratio has effects very similar to those from

varying truncation level. It is expected that a similar model could be applied to the

effects of varying aspect ratio as that applied to varying truncation level. Figure 29

shows behavior similar to that seen in Figure 28. The correlation between these effects

was not examined further.

 59

Figure 29: Diffuse Reflections Varying Height-to-width Aspect Ratio

G. COMBINING THE EFFECTS

This thesis did not examine the effects on the specular and diffuse reflections, as

truncation level and height-to-width aspect ratio were varied simultaneously. This was

considered beyond the scope of this thesis.

H. SUMMARY

It is evident that reflective behavior of surfaces change significantly when the

surface is represented by more than one polygon and become more complex. The

behaviors of both diffuse and specular reflections show considerable change when

roughness is added through an increase of either truncation level or aspect ratio. This

alone indicates the need for correcting OpenGL’s lighting equation for rendering implicit

rough surface behavior.

 60

THIS PAGE INTENTIONALLY LEFT BLANK

 61

VI. CONCLUSIONS

The addition of rough surfaces to computer graphics is not a simple task. Rough

surfaces have an infinite range of possibilities, even without considering those provided

by nature. However, advancing computer graphics through the implementation of rough

surface reflections still has its merit. Many in the computer graphics business attempt to

implement rough surfaces through increasing the number of polygons rendered every

second. They seek to create realism through explicitly giving objects texture with

millions of polygons. Another method, with an aim similar to this one, seeks to attach

the same realism through an implicit texturing rather than an explicit polyhedron. In

essence, this seeks to change the math behind the lighting calculations to achieve the

same result achieved by adding millions of polygons. Neither approach is necessarily

better or worse than the other; however the implicit method is achievable on today’s

hardware, and the latter must wait.

This thesis suggests that adding an semi-empirical correction to the models used

computer graphics is a viable method for significantly improving their over all realism,

and provides a simulation tool to quantify rough surface behaviors. The behavior of

rough surfaces has been compared to an astronomical phenomenon known as the

opposition effect, in attempt to qualify the behavior of a rough surface and begin to

understand how to model that behavior. Graphics libraries can already approximate the

opposition effect explicitly. These same graphics libraries would benefit great if they

could render the same behavior implicitly.

A computer graphics program using the OpenGL library was created to examine

the behaviors of light reflection off rough surfaces. In the design and development of this

program it became very clear that the task of creating an explicitly generated rough

surface that match the reflection behaviors of real textured surfaces is not simple. The

most basic element in the simulator also became the biggest limitation:

1. Rough surfaces, as the human eye sees it, are continuous. Even the
microscopic details of the surface have perfect color and shape. Computer
graphics on the other hand is not capable of rendering continuous forms.

 62

Its discrete nature will only ever be able to approximate that which is
continuous. Due to the complexity of rough surface reflections, that
approximation carries over into undesirable artifacts that dilute the real
behaviors. Thus making modeling such behaviors more difficult.

2. Rough surfaces can be thought of as surfaces composed of randomly
placed facets, which have, when taken as a whole, have a uniform
appearance. Any attempt to simulate rough surfaces must incorporate
this random nature.

3. Discrete geometric forms are not the best building blocks for constructing
a rough surface. Even if these forms are reduced in size small enough to
become microscopic, their geometry will still carry though and dominate,
thus inducing further error into the data.

A simulation, if able to overcome these stumbling points, would be a power tool

for examining the reflection behavior of simulated rough surfaces. Unfortunately, this is

only the start for developing a model. Because the algorithms used to draw the effects of

lighting in computer graphics are mathematically based, so must the model be.

With data provided by the simulator, specific behaviors were examined. These

behaviors were characterized into the two types of reflected light: diffuse and specular.

Each component is a function of the incidence angle, viewpoint, and the two methods in

the simulation program for varying the rough surface: height-to-width aspect ratio and

truncation level. Despite the problems inherent in the data, which resulted from

limitations in the simulation program, specific behaviors were extracted and models

developed for the simplest behavior.

1. It is possible for two separate specular reflections to occur, depending on
pyramid truncation level.

a. For the forward reflection:

i. The angular center of its reflection will always be twice the
angular difference between the incidence and surface
normal.

ii. The reflection intensity can be modeled by a decreasing
sine function of truncation level and source intensity.

b. For the backwards reflection:

i. The angular center of its reflection is driven by pyramid’s
height-to-width aspect ratio.

 63

ii. The reflection intensity can be modeled by the source
intensity and either an increasing sine function of the
truncation level decreasing cosine function of the aspect
ratio.

2. The diffuse reflection was found to have a three part model. This model
worked for rough surfaces varying either truncation level or height-to-
width aspect ratio. No explicit mathematical function was found;
however, a simple behavioral model was developed with the following
attributes:

a. The first and third steps acted like the original Gouraud shading
function driven by the primary viewable facet.

b. The second step exhibited an exponential decay of the difference
between the intensities of the first and third parts.

3. Combining the effects of varying truncation levels and aspect levels was
not examined.

While no final model exhibiting the characteristics of rough surface reflections

was created, important behavioral patterns were identified. Correcting the limitations of

the simulation and re-examining the data thus produced, should lead to better-defined

behaviors, and more refined models.

Despite the advancement of computer hardware and non-real time graphics

rendering, this approach may be the only real method for making realistic three-

dimensional graphics work in a real time interactive environment.

Finally, one rule is always paramount in computer graphics, which is also the

driving force behind this thesis:

IF IT LOOKS GOOD, IT IS GOOD.

 64

THIS PAGE INTENTIONALLY LEFT BLANK

 65

APPENDIX A: GLOSSARY OF TERMS

Ambient – Ambient light is non-directional and distributed uniformly throughout space.

Ambient light falling upon a surface approaches from all directions. The light is reflected

from the object independent of surface location and orientation with equal intensity in all

directions. (Woo, p685)

Antialiasing – A rendering technique that assigns to pixels the color of the primitive

being rendered, regardless of whether that primitive covers all or only a portion of the

pixel’s area. This results in jagged edges. (Woo p.686)

Culling – The process of eliminating polygons from being rendered either from hidden

surface removal or level of detail management. (Woo, p.690)

Diffuse - Diffuse lighting and reflection accounts for the direction of a light source. The

intensity of light striking a surface varies with the angle between the orientation of the

object and the direction of the source. A diffuse material scatters that light evenly in all

directions. (Woo, p.691)

Incidence Angle – The angle that a line (as a ray of light) falling on a surface or interface

makes with the normal drawn at the point of incidence. (Webster)

Lambertian – see diffuse.

Opposition Effect – In a medium in which the particles are large when compared

with the wavelength, particles near the surface case shadows on the deeper grains.

These shadows are visible at large phase angles, but close to zero phase-angle,

they are hidden by the object that cast them. Thus, the effect may only be thought

of as being caused by shadow hiding. (Hapke, p.217)

Phase Angle – The angular difference between the incidence and viewpoint angles. In

vector form, the phase angle can be calculated by: θ = cos–1 {(v . w)/([v][w])}

Specular - Specular lighting and reflection incorporates reflections off shiny objects and

the position of the viewer. Maximum specular reflectance occurs when the angle

between the viewer and the direction of the reflected light is zero. A specular material

 66

scatters light with greatest intensity in the direction of the reflection, and it is brightness

decays, based upon the exponential value shininess. (Woo, p.702)

 67

APPENDIX B: OPERATION MANUAL FOR ROUGH SURFACE
SIMULATOR

Program Requirements

• Java Runtime Environment (rev 1.3.0 or newer)

• Java3D w/ OpenGL Library (rev 1.2.0 or newer)

• Rough_Surface_Simulator.jar

System Requirement

• At least 800 MHz processor, 1GHz recommended

• At least 512 Mbytes Ram, 1 Gbytes recommended

• nVidia GeForce w/ 32 Mbytes VRam (or equivalent)

Installation and Setup Directions

1. Install Java Runtime Environment (JRE)

2. Install Java3D – installer should automatically install graphics library into JRE

directory structure.

3. Create a “c:\RSSimulator” directory

4. Put “rssimulator.jar”, & “Graphics User Interface.bat” & “Batch file.bat” into

c:\RSSimulator

5. Create a “c:\RSSimulator\data” directory

6. Create a “c:\RSSimulator\images” directory

7. Shutdown and Reboot Computer

 68

Running the Rough Surface Simulator from the Command Line

The rough surface simulator allows a command line option for program execution

to allow for batch file operation. There are some additional Java command-line options

that are required in order to properly set up the JRE, these options must be included. All

program options must also have a value. The following is a list of options:

• Pyramid Height-to-width Aspect Ratio (recommended 0.0 or greater)

• Pyramid Base Size (recommend 0.5 or less)

• Pyramid Truncation Height Level (recommend 0.0 to 1.0)

• Incidence Angle (0 to 90 degrees)

• Image Capture switch (“Image” or “NoImage”)

• Run Once Switch (“Once” or “NotOnce”)

• Elevation Rotation Increment (1 to 180 degrees)

• Azimuth Rotation Increment (1 to 180 degrees)

Examples:

java –mx512m –cp rssimulator.jar rssimulator.GUI 1.0 1.0 0.5 30 Image Once 1 5

This command line would run the program with 512 Mbyte memory model, use

classes stored in the rssimulator.jar file, an aspect ratio 1.0, a truncation level of 100%, a

pyramid base of 0.5, incidence angle of 30 degrees and the program would capture each

image rendered and save it as a file in the image directory.

Running the Rough Surface Simulator from a Batch File

 The program maybe run as part of a batch file to automate a large data run. In the

“c:\RSSimulator” directory, “Batch File.bat” is an example batch file. All parameters

must be appropriately filled as in the Command-Line execution. Any number of runs can

be added to the batch file. It recommended that all runs in a batch file, have the

 69

“NoImage” switch, as the images from a single run can take up several Mbytes of hard

drive space.

Running Rough Surface Simulator as a GUI Application

Running the Rough Surface Simulator is the preferred method, but allows for only

one run at time. Executing the “Graphics User Interface.bat” file (which is located in

“c:\RSSimulator” directory) will start the opening menu, which will ask the user to set

the parameters for aspect ratio, truncation level and incidence angle of the rough surface.

The following picture shows the layout of the opening menu.

Currently, this rough surface is set for an aspect ratio of 1.0, truncation level of

50%, an object size of 0.5 and an incidence angle of 45 degrees, the option to capture

images of the rough surface is turned off and the elevation and azimuth rotations will

increment by 1 and 5 respectively. If either rotation increment is modified, the user will

 70

need to click the “Update” button to ensure changes are registered in the program. After

setting the desired parameters, the rough surface can be generated by clicking on 1 of 2

“Create Model” buttons. The Pyramid Model button will disregard any truncation level

value set and render a scene of full pyramids. The Truncated Pyramid Model will

generate a surface with the set truncation level. This window will be replaced with the

simulator window.

From here, clicking on the Start button begins execution of the simulator. If for

some reason it is desirable to stop the application the click the Stop button. It is

 71

important note, that once the application is stopped, it cannot be restarted. This window

must then be closed by clicking on the Quit button. All data stored up to this point will

be saved in an appropriately titled file and stored in the data directory. The program will

close all windows on its own.

Converting Simulation Results into an Excel Spread Sheet

 After a run has been completed, the data will be stored in the

“c:\rssimulation\data” directory. An example file for a simulation run with a height-to-

width aspect ratio of 1.0, a truncation level 50% and a incidence angle of 45 degrees

would be named “example_data_from_A1.0_T0.5_L45.0.txt”. The contents of the file

would look something like:

AzGamma ElGamma Roughness Incidence Control Rough Final Azimuth Elevation

0.0 -45.0 0.5 45.0 0.0 27.81 27.81 0.0 0.0

0.0 -44.0 0.5 45.0 0.0 27.81 27.81 0.0 1.0

0.0 -43.0 0.5 45.0 63.0 80.22 80.22 0.0 2.0

0.0 -42.0 0.5 45.0 76.5 56.69 56.69 0.0 3.0

 To convert this file into a working Microsoft Excel work sheet, follow the step-

by-step procedure:

1. Open Microsoft Excel

2. Under Files, select the Open function

3. Navigate to the “c:\rssimulator\data” directory and select the desired data file

4. Change the file type to be opened to All Files *.*

5. Click on the Open button (see the illustration on the next page for help)

 72

6. For Original Data Type, select Delimited, and click on Next

 73

7. Now, add Spaces to the range of Delimiters, then click on Finish

8. Your now have the data represented in a working Excel spreadsheet

Creating a Standard Chart of the data

 To recreate charts as seen in Chapter V, complete the following steps:

1. Select the Chart Wizard, which is the button with the blue, yellow and red bar

graph on it

 74

2. Select the Line Graph option

3. Select the Series tab on the next window

4. Remove all undesired columns from the series window

5. Add the Elevation column to the Category(X)axis labels:

 75

6. Click the Finish button, and you are done

Rough

-100

-80

-60

-40

-20

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16

Rough

 76

7. Of course axis and charts labels need to be added, this can be accomplished

through clicking on the graph with the mouse, clicking the right mouse button,

selecting Edit Chart Object and then Chart Options

8. The rest should be self-explanatory

 77

LIST OF REFERENCES

1. Baer, W. et al, Toward Standard Rendering Equation For Intrinsic Earth Surface
Classification, 2000 Spring Simulation Interoperability Workshop, Workshop
Paper 00S-SIW-70 March, 2000

2. Baer, W., Personal Communications, September 2000 – August 2001

3. Bui-Tuong, Phong, Illumination for Computer-generated Pictures, Comm. ACM,
18(6), June 1975

4. Hamilton, L., Regression With Graphics: A Second Course in Applied Statistics,
Duxbury Press, 1992

5. Hapke, B., Theory of Reflectance and Emittance Spectroscopy, Cambridge University
Press, August 1993

6. Moller, T. and Haines E., Real-Time Rendering, A K Peters Ltd, 1999

7. Ryan T., Modern Regression Methods, Wiley Inter-Science, 1997

8. Sun Microsystems Inc, http://www.javasoft.com/, accessed October 2000 – August

2001

9. University of Dayton, http://www.udayton.edu/, accessed January – June 2001

10. Watt A. and Watt M., Advanced Animation and Rendering Techniques and Practice,
Addison Wesley, 1994

11. Webster Dictionary, http://www.webster.com/, accessed August 2001

12. Woo M. et al. (OpenGL Architecture Review Board), OpenGL Programming Guide,
Addison Wesley, July 1999

 78

THIS PAGE INTENTIONALLY LEFT BLANK

 79

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center

8725 John J. Kingman Road, Suite 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library

Naval Postgraduate School

411 Dyer Road

Monterey, CA 93943-5101

3. Professor Wolfgang Baer, Code (CS)

Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943-5101

4. Professor Samuel Buttrey, Code (OR/5b)

Department of Operations Research

Naval Postgraduate School

Monterey, CA 93943-5101

5. Professor Eric Bachmann, Code (MV)

MOVES Academic Group

Naval Postgraduate School

 Monterey, CA 93943-5101

6. LT Christopher P. Slattery

171 Irish Settlement Road

Underhill, Vermont 05489

 80

THIS PAGE INTENTIONALLY LEFT BLANK

